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Full-waveform inversion in the time domain with an energy-weighted gradient
Zhigang Zhang, Youzuo Lin and Lianjie Huang, Los Alamos National Laboratory, Geophysics Group, MS D443, Los
Alamos, NM 87545

SUMMARY

When applying full-waveform inversion to surface seismic re-
flection data, one difficulty is that the deep region of the model
is usually not reconstructed as well as the shallow region.
We develop an energy-weighted gradient method for the time-
domain full-waveform inversion to accelerate the convergence
rate and improve reconstruction of the entire model without in-
creasing the computational cost. Three different methods can
alleviate the problem of poor reconstruction in the deep re-
gion of the model: the layer stripping, depth-weighting and
pseudo-Hessian schemes. The first two approaches need to
subjectively choose stripping depths and weighting functions.
The third one scales the gradient with only the forward prop-
agation wavefields from sources. However, the Hessian de-
pends on wavefields from both sources and receivers. Our new
energy-weighted method makes use of the energies of both for-
ward and backward propagated wavefields from sources and
receivers as weights to compute the gradient. We compare the
reconstruction of our new method with those of the conjugate
gradient and pseudo-Hessian methods, and demonstrate that
our new method significantly improves the reconstruction of
both the shallow and deep regions of the model.

INTRODUCTION

Surface seismic surveys are most commonly used in energy
exploration and reservoir monitoring. Full-waveform inver-
sion is becoming a promising tool for velocity updating with
increasing computing powers. However, full-waveform inver-
sion of surface seismic reflection data usually reconstructs the
shallow region of the velocity model better than the deeper re-
gion. It has been recognized that this phenomenon is caused by
the uneven spatial distribution of seismic energy in the model.
The dominant effect causing this uneven distribution is the ge-
ometrical spreading and therefore, the shallow region is better
resolved than the deep region when both sources and receivers
are located on the surface.

Three different methods have been developed to alleviate the
problem of poor reconstructions in the deep region of the model.
The layer stripping method updates the shallow region of the
model or the entire model first (Wang and Rao, 2009), and
then updates the deep region. It may consist of several starting
depths that gradually moves downward. Because the magni-
tude of the gradient is larger in the shallow region than that in
the deep region of the model, the shallow region reaches the
best-fit model earlier than the deep region. So the layer strip-
ping method can improve the reconstruction of the deep region
of the model. Another method is the depth-weighting method
that amplifies the gradient in the deep region by multiplying
the gradient with a function of depth. It balances the magni-
tude of the gradient by giving more weight to the deep region

(Wang and Rao, 2009; Brenders and Pratt, 2007). These two
methods are helpful to improve reconstruction images. How-
ever, the decay of the gradient is not strictly a function of the
depth, and there are no objective criteria to implement the layer
stripping and depth-weighting methods. For example, in the
layer stripping method, when and where to move to the next
stripping depth level are rather subjective during implementa-
tion. Different choices may not lead to the same result. In the
depth-weighting method, the weighting function is arbitrary as
long as it varies the weights to the gradient with the depth.

The third method stems from the structure of the Hessian. It
is well known that the Gauss-Newton method has a better con-
vergence rate than the gradient-based method. However, it is
quite expensive to calculate the Hessian matrix. In the fre-
quency domain, Pratt et al. (1998) showed that the approxi-
mate Hessian is dominated by its diagonal terms. If neglecting
the off-diagonal term of the approximate Hessian and assum-
ing the inner product of the Green’s functions are the same,
Shin et al. (2001) concluded that the reversal of the diagonal
of their pseudo-Hessian can compensate for the geometrical
spreading. Choi et al. (2008) introduced the sum of the am-
plitudes of the impulse responses to the diagonal terms of the
pseudo-Hessian. However, this new pseudo-Hessian only ac-
counts for the geometrical spreading effect from the sources.

In full-waveform inversion, the amplitudes of both forward
propagating waves from sources and backward propagating
waves from receivers change with time and space during prop-
agation. The Hessian depends on both wavefields from sources
and receivers. We propose a new full-waveform inversion ap-
proach in the time domain that uses both the energies of for-
ward and backward propagation waves to weight the gradient.
It can effectively removes the effects of wave propagation from
both sources and receivers, including transmission, scattering
and geometrical spreading. We numerically demonstrate that
the full-waveform inversion with energy-weighted gradients
can enhance the convergence rate and particularly improve the
reconstruction of the deep region of the model.

ENERGY-WEIGHTED GRADIENT

Full-waveform inversion in the time domain minimizes the
misfit function given by

E =
∑
(s,r)

1
2
[ũ(xr,xs)− d̃(xr,xs)]

T [ũ(xr,xs)− d̃(xr,xs)], (1)

where ũ is the synthetic wavefield at receiver r from source s,
d̃ is the data at receiver r from source s, and the superscript T
represents the transpose.

The Hessian matrix is given by

H = ÃT Ã+

(
∂ Ã
∂m

)T

δ d̃, (2)
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Figure 1: A velocity model with steep faults. (a) Smoothed ini-
tial velocity model for waveform inversion; (b) True velocity
model (Courtesy of John Queen of Hi-Q Geophysical Inc.).

where m is the model parameter and δ d̃ = ũ− d̃. If the bulk
module is the model parameter and the density is constant, the
term Ã in equation (2) is given by

Ã =
∑
(s,r)

∇ ·g(x,xr)∗∇ ·u(x,xs). (3)

The approximate Hessian is simply Ha = ÃT Ã.

The term Ã has a dimension of N×M, where N is the number
of temporal data points and M the number of model parame-
ters. Let U(x,xs) be a discretized time series of ∇ · u(x,xs),
and G(x,xr) be a discretized time series of ∇ · g(x,xr), then
the diagonal terms of the approximate Hessian becomes

diag{ÃT Ã}={
∑
(s,r)

[UT (x1,xs)G(x1,xr)]
2

. . .
∑
(s,r)

[UT (xM ,xs)G(xM ,xr)]
2}.

(4)

Equation (4) clearly shows that it contains wave propagation
effects from both sources and receivers. Equation (4) is com-
putationally expensive. To account for wave propagation ef-
fects, we use the forward and backward propagated wavefields
to compute weights Ws and Wr:

Ws ≡
∑

s
UT (x,xs)U(x,xs),

Wr ≡
∑

r
δ d̃T GT (x,xr)G(x,xr)δ d̃,

(5)
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Figure 2: Results of full-waveform inversion with 10 iterations
using the conjugate gradient method (a) and our new energy-
weighted gradient method (b). The faults and the deep region
in (b) are better reconstructed than those in (a).

and then obtain the energy-weighted gradient given by

γw =
ÃT δd
WsWr

. (6)

We use equation (6) to update the model during the full-waveform
inversion.

In contrast, the pseudo-Hessian method in the frequency do-
main uses only the forward propagating wavefields from sources
to weight the gradient (Choi et al., 2008). The diagonal terms
of the approximate Hessian in the frequency domain are given
by (Pratt et al., 1998)

diag(Ha) =
∑

Re{( δu
δm1

)T (
δu

δm1
)∗

(
δu

δm2
)T (

δu
δm2

)∗ . . . (
δu

δmM
)T (

δu
δmM

)∗},
(7)

where

Re{( δu
δmi

)T (
δu
δmi

)∗ = (fi)
T (S−1)T (S−1)∗(fi)

∗. (8)

In equation (8), S is the complex impedance matrix, and fi the
virtual source vector. To simply the calculation, Choi et al.
(2008) defined a new pseudo-Hessian as:

diag{(H)new−p}=
∑

Re{(fs,1)
T A(fs,1)

∗ . . .(fs,M)T A(fs,M)∗},
(9)
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Figure 3: The panels in (a) and (b) are the differences between
the inversion results in Fig. 2 and the initial smoothed model
in Fig. 1(a), and the panel in (c) is the true difference between
Fig. 1(b) and Fig. 1(a). The faults and the deep region are
better reconstructed by our energy-weighted gradient method
(b) than the conjugate gradient method (a).

with

diag{A}= Re{
ns∑

s=1

∣∣gs,1
∣∣ · · · ns∑

s=1

∣∣gs,2n
∣∣}, (10)

where g is the impulse response, ns is the number of sources,
and n is the number of model grid points. Using equation (10)
compensates for the geometrical spreading effect only from
sources, not from receivers.
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Figure 4: Two vertical profiles of Fig. 3 at two horizontal po-
sitions of (a) X=1100 m and (b) X=2000 m.

NUMERICAL RESULTS

We use a model with several steep faults as shown in Fig. 1 to
test and verify the improved capability of the full-waveform in-
version with our new energy-weighted gradient method for re-
constructing the steep faults and the deep region of the model.
We generate synthetic reflection data for 20 sources and 450
receivers located on the top surface of the model. The central
frequency of the source wavelet is 25 Hz. Figure 2 shows the
results obtained using the conjugate gradient (CG) method and
our energy-weighted gradient (EWG) method. The differences
between the reconstructed images and the initial model are dis-
played in Fig. 3. Figs. 2 and 3 clearly show that, while the CG
method can reconstruct only the shallow region of the model,
the EWG method can recover both the shallow and deep re-
gions, and can reconstruct the steep faults better than the CG
method. Comparing the shallow region above the depth at 800
m in Figs. 3(a) and (b), we can see that the EWG method re-
constructs the model better than the CG method.

Figure 4 shows a comparison of the two vertical profiles of
Fig. 3 at two horizontal positions of 1100 m and 2000 m. In the
region beneath about 1000 m in Fig. 4(a), the reconstruction
result of the EWG method is significantly better than that of
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Figure 5: Comparison of the data misfits of the CG and EWG
methods as a function of iterations. The misfit of the EWG
method decreases faster than that of the CG method.

the CG method. For the vertical file in Fig. 4(b), the EWG
method greatly improves the reconstruction from the depth at
approximately 300 m to the bottom of the model compared to
the CG method. Note that only 20 common-shot gathers are
used in this study. The EWG results will be further improved
by using more common-shot gathers of data.

Figure 5 is a comparison between the data misfits of the EWG
and CG methods as a function of iterations. The data misfit of
the EWG method decreases more rapidly than that of the CG
method in the first a few iterations, which proves that weight-
ing using the uneven spatial distribution of acoustic-wave en-
ergy plays an important role in full-waveform inversion. Fig-
ure 5 shows that the misfit of the CG method is almost the same
as that of the EWG method after 10 iterations, even though the
reconstructed model of the CG method still significantly dif-
fers from the true model (see Fig. 2a and the green line in
Fig. 4). This is because the early arrivals in the data, or re-
flections from the shallow region of the model, contain much
stronger wave energy than the later arrivals, and dominate the
value of the data misfit function.

The pseudo-Hessian method developed by Choi et al. (2008)
also accelerates the convergence of the gradient-based method.
Fig. 6 shows that our energy-weighted gradient method gives a
better balance of the gradient in shallow and deep regions com-
pared to both the CG and pseudo-Hessian methods. Therefore,
our EWG method can achieve a higher convergence rate for
the entire model than the other methods.

CONCLUSIONS

We have developed an energy-weighted gradient method for
full-waveform inversion in the time domain. The method ac-
counts for the propagation effects of wavefields from both sources
and receivers, and use the wave energies from sources and re-
ceivers to weight the gradient. We have numerically demon-
strated that the energy-weighted gradient method significantly
improves the reconstructions of both the shallow and deep re-
gions of the model, and enhance the convergence rate of gradient-
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Figure 6: The gradients of the first iteration for (a) the conju-
gate gradient method, (b) the modified pseudo-Hessian method
of Choi et al. (2008), and (c) our energy-weighted gradient
method. Almost all the features in the model differences are
more strongly enhanced by the EWG method, particularly the
deep region of the model.

based methods without increasing computational cost.
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